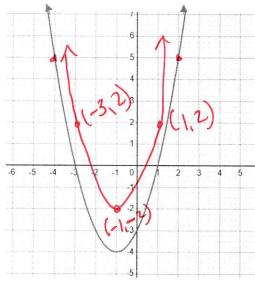
Key


Final Exam Fall 2024:

1) Use the graph to answer the questions:

<15 pts>

2) Use the graph of y=f(x) to answer the questions

<14 pts>

a) What is the slope? Include units.

-\$100/year

b) What Is the y-intercept and what does it

represent? vave of in

- c) Use the graph to find f(3). Include units.
- d) What is the domain (in interval notation)?
- e) What is the range (in interval notation)?
- f) What is the x-intercept and what does it represent? After 5 years, the waker has no valve.
- g) Write the equation that gives the value of the washing machine after x years.

 $y = -100 \times +500$

- a) Give the interval(s) on which f(x) is increasing.
- b) List the vertex. Is it a max or min? (I, -4) MIN
- c) List the axis of symmetry X =-
- d) List the range in interval notation.
- e) State the domain in interval notation.

(-00,00)

- f) Find f(0) = -3
- g) Give the x-value(s) where f(x)=5. 2, -4=x
- h) Give the interval(s) on which $f(x) \le 0$
- i) Graph h(x) = f(x) + 2 on the same set of axes. Label 3 points on h(x).
- 3) Wade's grandmother gave him \$100 for his birthday. Wade wants to save his money to buy some headphones. Each month, he adds \$25 to his savings. <5 pts>
- a) Write a function that gives the total amount Wade has after x months.

P(X) = 100 +25X.

b) Set up an equation to find the number of months until he had \$250 saved. Do NOT solve.

ACKNA 100+25x = 250

- 4) State the <u>domain</u> in interval notation:
- f(x) = -
- X = -1
- $g(x) = 2x^3 4x + 1$

- [7,00
- X27
- (-0,-1)

(-00,00)

5) Consider the equation 3x - 5y = 10

<5 pts>

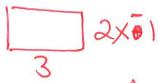
Solve the equation for v

b) State the slope and y-intercept:

Slope:

y-intercept:

P=3+3+ZX+1+ZX+1


6) Consider a rectangle with a length of 3 cm and a width of 2x-1 cm

<8 pts>

a) Find the area of the rectangle. Include units.

7==X-2

b) Find the perimeter of the rectangle. Include units.

P= 4X-4 cm A=L.W = 10x = 3 cm

- 7) A study found that the yield (in thousands of pounds of vegetables), y, was related to the amount of fertilizer
 - per acre (in hundreds of pounds), x, by $y = -0.3x^2 + 1.08x + 1$ <5 pts>

 a) How much fertilizer is needed to maximize yield? Include units. Show work algebraically (no guess and check)

$$x = \frac{b}{2a} = \frac{-1.08}{2(-0.3)} = 1.8 \text{ hundred}$$

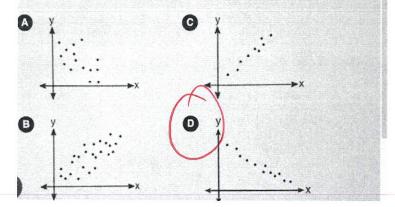
b) What is the maximum yield? Include units.

 $-0.3(1.8)^2 + 1.08(1.8) + 1 = 1.972$ thous. Ubs of

- 8) Under each, indicate if it is: linear, quadratic, exponential growth, exponential decay, logarithmic, or another power model (other than linear or quadratic) <9 pts>
- a) $y = 2(0.1)^x$

Answer exp. decay

c) $f(x) = 2x^{1.3}$


Answer po wer

d)	Х	Υ	
	1	5	XT
+14	- 2	25	Y
LX	3	125	V2 /-
1.7	4	625	N

5 - 1
10
15 / 15
20) 15

9) <3 pts>

Which graph represents data used in a linear regression that produces a correlation coefficient closest to -1?

10) Use the chart to answer the following:

<6 pts>

Dosage Calculation Conversions

1 mg - 1000 mcg 1 gm (g) = 1000 mg 1 L = 1000 mL 1 mL = 1 cc 5 mL - 1 Tsp 3 Tsp = 1 Tbsp 15 mL - 1 Tbsp 30 mL = 1 oz 1 oz = 2 Tbsp 8 oz = 1 cup 1 kg - 1000 gm (g) 1 kg = 2.2 lbs NursingSOS

How many milliliters are in 2.8 teaspoons?

b) How many grams (g) are in 200 micrograms (mcg)?

200 mgg. Ing 1900 mg

11) Solve algebraically (no guess and check so show all appropriate steps). Round to 2 decimal places if needed

a)
$$5x^2 - 2x - 4 = 0$$

$$\frac{1}{2}x - \frac{2}{3} = \frac{x}{6} - 5$$

$$= 2 + 84$$

$$= 2 + 84$$

$$= 2 + 84$$

$$= 2 - 84 = -77$$

$$= 2 - 84 = -77$$

$$= 2 - 84 = -77$$

$$2x = -36$$
 $X = -13$

$$6x^{1/3} + 4 = 22$$

$$\frac{2}{x^2} = 50$$

$$2 = 50 \times 2$$

$$x^{2} = \frac{2}{50}$$
 $x^{2} = \frac{1}{25}$

$$a = \frac{1}{2} \times = \pm \left(\frac{1}{25}\right)$$

$$(31)^{3} = 3$$
 $(31)^{3} = 3$
 $(31)^{3} = 3$

12) Suppose that $f(x) = 2000e^{0.02x}$ gives the amount in dollars, in an account after x years.

<13 pts>

a) Find the amount in the account after 4 years. Round to the nearest cent.

2000e0.02(4) = 2000e.08 = [1] 2166.57

b) Algebraically find the number of years it would take to have \$3,000 in the account. No guess and check, show ALL steps algebraically. Round to 2 decimal places.

 $\frac{3000}{2000} = \frac{20000}{2000}.02X$ $\frac{3}{3} = 0.00X$

 $m_{\overline{a}}^{3} = 0.02x$

c) Set up <u>inequalities</u> for the following. But, **DO NOT SOLVE:**

C1) When will the amount in the account exceed \$5000?

2000e.02x >5000

C2) How long will the amount in the account stay under \$3000?

2000c.02x<3000

C3) When will the amount in the count be at least \$4000?

2000e.024 = 4000

13) Solve for L:

<16 pts>

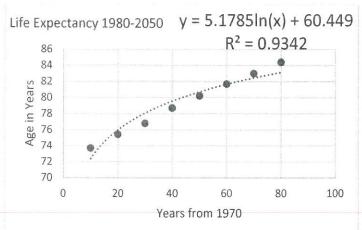
a) A = LW

c) 5L + Ly = 9

L(5+y)=9 L = 9 5+y

b) P = 2L + 2W

d) $2 \cdot 3 < \frac{2}{2} \le 5$. Write solution in interval notation.


P-2W= 2L

6 < 2 1 10

L= P-2W OR L= P-W

3/21=7

14) Use the graph to answer the following: <10 pts>

Does the logarithmic function seem to be a good fit for the data? Why or why not?

10,12 is close to 1.

b) Use the equation of the logarithmic regression model to approximate the life expectance in the year 2010. Be sure to your answer seems reasonable from the graph. Round to 2 decimal places. 2010 -1970

Suppose instead that we wanted the model to have x be the number of years since 1980. Write the new equation in terms of x.

5.1785 m (X+10) +

d) Use the equation of the regression model to predict the year in which the life expectancy will be 82. Show all work algebraically, no guess and check. Be sure your answer seems reasonable from graph. Round to nearest year.

(04.176 years

1X = 21.551

15) Set up the system, define the variables. **Do NOT solve.** A chemist needs to mix a 10% acid solution with a 30% acid solution to create 100ml of a 20% acid solution. How many ml of each solution should be used?

Define variables and set up system only!

= amt(ML) of 103 Sol. X+y=100= amt(ML) of 308 sold. 1.10x+.30y=.20000

16) Find the equation of the line through the points (2,4) and (6,9)

$$M = 9 - 4 = 5$$
 $6 - 2 + 4$

$$4-y_1 = M(X-X_1)$$

 $4-4 = 5(x-2)$

17) Write an exponential function for the amount after t hours if the initial amount of medicine in the system is 200 mg and it is decreasing by 10% per hour. (1-10

$$f(x) = 200 (.90)^{2}$$

18) Set up and the system solve algebraically:

The talent show committee sold a total of 530 tickets in advance. Student tickets cost \$3 each and the adult tickets cost \$4 each. If the total receipts were \$1740, how many of each type of ticket were sold? Define the variables and solve algebraically (no guess and check). Write answer in sentence form.

$$2 \times 44 = 530 = 63$$
.
 $13 \times 44 = 1740$.

$$=150$$
 $X+150=53$

19) The cost, in collars, to produce x shelving units is C(x)=10x+5000. The Revenue generated from the sale of x units is R(x)=210x. <7 pts>

a) What is the profit function for the sale of x units?

$$P = R - C$$
= $210 \times - (10 \times + 5000)$

$$RX = 200 \times - 5000$$

$$2 = C$$

$$210 \times = 10 \times + 5000$$

$$200 \times = 5000 \times -35$$

$$200 \times -35$$

$$200 \times -35$$

20) Factor completely:

a)
$$25x^2 - 4$$

b)
$$2x^2 - 2x - 12$$

c)
$$2x^2 + 5x - 12$$

5x-2) (5x+2)

$$(2X-3)(X+4)$$

21) If there are 15 trees in a forest and this represents 12% of the total trees. How many trees are there in the forest? <3 pts>
$1239 - 2015$ $\frac{.12x}{.12} = 15$ $x = 125$ trees
22) If there are 200 trees in a forest and 6% of them are dead and need to be taken down, how many of them need to be taken down? <3 pts>
93906 (200) = [12 trees]
23) If there are 200 trees in the forest and 33% more are planted, how many will there be in all? <3 pts>
200 + .33(200) = QU6 trees,
24) If there were 200 trees in a forest and more were planted. After the planting, there were 360 trees. What is the percent increase in trees? 3 pts>
Jew = old + 3 of old) 160 = 200x
360 = 200 + 2.200 $X = .8 - 803$
Graph $y=2^x$ and $y=log_2x$ on the same set of axes. Label at least 4 points on each. <5 pts>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
26) Give the equation of the functions: <9 pts>
a) X -2 -1 0 1 2
y 3 7.5 18.75 46.875 117.1875
prential x2.5 x2.5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
X 0 1 2 3 4
y 4 7 10 13 16
m = 3/1 = 3 $+3$ $-4 = 3(X-0)$
c) There are initially 400 bacteria and the amount triples every day.

y=400 (3)x