Math 282	FINAL EXAM	Fall 2021
SHOW ALL WORK	Keep three decimal places in most calcula	tions
1. Here are the travel tir	nes (in minutes) to work for 7 workers in a s	small town:
4 9 12 15	18 7 5	
a) [5] Find the samp	le mean of the times.	
b) [5] Find the samp	le standard deviation of the times.	
2 Use the following dat:	a	
	a	
20 25 32 14 35	46 36 50 58 85 22 30 55 52	
a) [10] Find the <i>five-num</i>	iber summary	
b) [5] Is there any outlier	r in this data set? If any, which value? Use 1	.5 IQR rule.

3. The probability distribution of the first digits of numbers in legitimate records is below.

First digit	1	2	3	4	5	6	7	8	9
probability	0.301	?	0.125	0.097	0.079	0.067	0.058	0.051	0.046

a) [4] What is the probability that the first digit is 2?

b) [4] Find the probability that the first digit is greater than or equal to 6.

4. The following table gives the sex and age group of college students at a Midwestern university.

	Female	Male	Total	
15 to 17 years	89	61	150	
18 to 24 years	5,668	4,697	10,365	
25 to 34 years	1,904	1,589	3,493	
35 years or older	1,660	970	2,630	
Total	9,321	7,317	16,638	

A student is to be selected at random.

- a) [6] Find the probability that the selected student is a female.
- b) [6] Given that the selected student is female, find the conditional probability that she is 25 to 34 years old.
- 5. A multiple choice test has five questions, each with four answer choices. One of these choice is the correct answer. Assume you make random guesses. Let x be the number of questions you guessed correctly, then X has a binomial distribution with n = 5, p = 0.25.
- a) [6] Find the probability that you guessed exact 3 questions correctly.

b) [6] Find the probability that you guessed at least one question correctly.

- 6. Birth weights, X, at a local hospital have a Normal distribution with a mean of 110 oz. and a standard deviation of 13 oz.
- a) [7] Find the probability that a randomly chosen newborn has weight more than 120 oz.

- b) [6] How much must a newborn weigh to be in the top 10%?
- c) [7] Consider an SRS of 16 newborns in this hospital. Find P($110 < \overline{X} < 120$).
- 7. Suppose we use the fat content x to predict the calorie content y (in grams) of some food. The correlation r = 0.979. A summary of a random sample is:

variable	mean	standard deviation
Fat content x	$\bar{x} = 40.35$	<i>s_x</i> =27.99
Calorie content y	\overline{y} =662.88	<i>s_y</i> =324.90

- a) [4] Find the intercept and slope of the least square line.
- b) [4] Write the equation of the regression line.
- c) [4] If $SE_b = 0.523$ and n = 26, what is the 95% confidence interval for the slope.

- 8. A simple random sample of 30 Chancellor's Scholarship recipients at SIU yields an average ACT score $\bar{x} = 33$ and sample standard deviation s = 2. Answer the questions below and make a 95% confidence interval for μ , which is the mean ACT score of all Chancellor's Scholarship recipients at SIU.
 - a) [4] To make the confidence interval, do you use a T-procedure or a Z- procedure?
 - b) [5] Calculate the margin of error.
 - c) [5] Make a 95% confidence interval for μ .

- 9. Find the p-value (exactly for the normal distribution, and a range for the *t* distribution) in each of the following hypotheses testing problems:
 - a) [6] Testing $H_0: \mu = 15$ versus $H_a: \mu \neq 15$; sample size n = 25, test statistic z = 1.75.
 - b) [6] Testing $H_0: \mu = 15$ versus $H_a: \mu > 15$; sample size n = 25, test statistic t = 2.96.
- 10. An inspector inspects large truckloads of potatoes to determine the proportion p in the shipment with major defects prior to using the potatoes to make potato chips. Unless there is clear evidence that p is less than 0.10, he will reject the shipment. He selects an SRS of 200 potatoes from the truck. Suppose that 12 of the potatoes are found to have major defects.

Do the hypotheses test: $H_0: p = 0.10$ versus $H_a: p < 0.10$, and help him to make a decision.

a) [4] Calculate the sample proportion \hat{p} .

- b) [5] Calculate the test statistic.
- c) [5] Find the p-value.
- d) [4] Given α =0.05, what is your conclusion? Should he reject the shipment?
- 11. A researcher suspects that the new drug results in greater average reduction in blood pressure (μ_1) than the old drug does (μ_2) . In an experiment, 21 subjects were assigned randomly to the treatment group receiving the new drug. The other 23 subjects were assigned to the control group receiving the old drug. After a suitable period of time, the reduction in blood pressure for each subject was recorded. The output below is based on the data collected from the experiment. Let $mud = \mu_1 \mu_2$.

test	alternative	T-value	p-value	95% CI	mud=mu1-mu2
matched pairs :	mud not = 0	3.130	0.0055	(0.696,	3.504)
matched pairs :	mud > 0	3.130	0.0028	(0.696,	3.504)
matched pairs :	mud < 0	3.130	0.997	(0.696,	3.504)
2 sample t :	mud not = 0	2.159	0.037	(0.318,	9.602)
2 sample t :	mud >0	2.159	0.018	(0.318,	9.602)
2 sample t :	mud <0	2.159	0.981	(0.318,	9.602)

- a) [4] To test the researcher's suspect, which procedure should be used?
- b) [12] Using the output above do a 4 step hypotheses test. (α = 0.05)

c) [4] Give a 95% confidence interval for the difference in means of blood pressure deduction.

12. Recent revenue shortfalls in a southern state led to a reduction in the state budget for higher education. To offset the reduction, a state university proposed a 20% tuition increase. To test whether there was any relationship between student year in school and student opinion, a simple random sample of 170 students from the university were asked whether they were strongly opposed to the increase. The table below is the summary of the data.

	Freshman	Sophomore	Junior	Senior	total
Observed	39	30	29	8	106
Expected	(31.176)	(24.941)	(31.176)	()	
Cell chisq	(1.964)	(1.026)	(0.152)	()	
Observed	11	10	21	22	64
Expected	(18.824)	(15.059)	(18.824)	(11.294)	
Cell chisq	(3.252)	(1.700)	(0.252)	()	
	50	40	50	30	170
	Observed Expected Cell chisq Observed Expected Cell chisq	FreshmanObserved39Expected(31.176)Cell chisq(1.964)Observed11Expected(18.824)Cell chisq(3.252)50	Freshman Sophomore Observed 39 30 Expected (31.176) (24.941) Cell chisq (1.964) (1.026) Observed 11 10 Expected (18.824) (15.059) Cell chisq (3.252) (1.700)	Freshman Sophomore Junior Observed 39 30 29 Expected (31.176) (24.941) (31.176) Cell chisq (1.964) (1.026) (0.152) Observed 11 10 21 Expected (18.824) (15.059) (18.824) Cell chisq (3.252) (1.700) (0.252)	Freshman Sophomore Junior Senior Observed 39 30 29 8 Expected (31.176) (24.941) (31.176) () Cell chisq (1.964) (1.026) (0.152) () Observed 11 10 21 22 Expected (18.824) (15.059) (18.824) (11.294) Cell chisq (3.252) (1.700) (0.252) () 50 40 50 30 30 30 30

a) [4] State the hypotheses H_0 :

 H_a :

b) [4] Find the value of the expected count that is not given in the table. Find the 2 cell chi square contribution that needs to be computed. Show work. (use three decimal places)

- c) [5] Calculate the test statistic χ^2 .
- d) [5] Find a range for the p-value of the test.
- e) [2] Given α = 0.05, what is your conclusion?

- 13. [27] Circle the correct answer.
- 1) Which of the following indicates the strongest linear relationship?

A) r = .5 B) r = .09 C) r = - .8

- A stem-plot is most similar to
 A) A boxplot
 B) a time plot
 C) a histogram where the stems are the classes
- 3) Dawg Tag number as student ID at SIU is a numerical variable.A) True B) false
- A Math Department can send 10 people to a national convention. The department decided to select 5 students and 5 faculty members at random. Identify the type of sampling used.
 A) Convenience B) Stratified C) Simple Random D) voluntary Response
- 5) A sample was collected from 98 calls made by local listeners. The sampling technique used was
 A) Convenience B) Stratified C) Simple Random D) voluntary Response
- 6) Let X be the number of births until the first boy is born in a large hospital, then X has a binomial distribution.

A) true B) false

- 7) The distribution of adult women's heights is approximately normal with a mean of 64 inches and a standard deviation of 2.7 inches. Heights of 10 year old girls follow an approximately normal distribution with a mean of 54 inches and a standard deviation of 2.5 inches. Alice's height is 65 inches, and her 10 year old daughter's height is 57 inches. Who is relatively higher?
 - A) Alice B) her daughter
- 8) The sample data appears to come from a normal distributed population with standard deviation $\sigma = 28$.

Claim: $\mu \neq 977$. Determine whether the hypothesis test involves a t-test, z-test, neither. A) T-test B) Z-test C) Neither

- 9) A and B are two disjoint events and P(A) = 0.5, P(B) = 0.3. P(A or B) is equal:
 - A) 0.65 B) 0.3 C) 0.8 D) 0.5