1. Integrate the following

a)
$$\int \frac{3x+8}{x^2+4x+4} dx$$

b)
$$\int (3x) \ln(x) dx$$

c) $\int tan^5(2x)sec^3(2x) dx$

d)
$$\int \frac{\sqrt{x^2 - 25}}{x} \, dx$$

e) $\int \sin^2(3x)\cos^2(3x) \ dx$

$$f) \int_1^5 3x \sqrt{x-1} \, dx$$

2. Find each limit if it exists.

a)
$$\lim_{x \to 2} \frac{x^3 - 4x^2 + 4x}{3x^2 - 12x + 12}$$

b) $\lim_{x\to 0^+} (2x)^{\sin(x)}$

3. Evaluate each improper integral if it converges, otherwise clearly state that it diverges.

a)
$$\int_{-\infty}^{0} 2 \tan^{-1}(3x) \ dx$$

b)
$$\int_0^1 \frac{4}{3x^3} dx$$

4. State whether the following converge conditionally, converge absolutely or diverge. Show all work and state the names of all tests used.

a)
$$\sum_{k=2}^{\infty} \frac{7}{k \ln(k)}$$

b)
$$\sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^{n-\sqrt{n}}$$

c)
$$\sum_{n=1}^{\infty} \frac{(-5)^n 2n!}{(2n)!}$$

d)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{11k+20}$$

5. Find the interval and radius of convergence for the given power series. Be sure to check the endpoints.

$$\sum_{n=1}^{\infty} \frac{(-4)^n (2x-8)^n}{\sqrt{3n+1}}$$

6. Determine the McLaurin series for the following. Give your answer in summation notation.

a)
$$f(x) = 4x^2(\sin(8x^3))$$

b)
$$g(x) = \frac{e^{x^2}}{2x^3}$$

7. Find the Taylor polynomial of order four for $F(x) = \sin(2x)$ where $a = -\pi/12$.

8. Evaluate the following integral to the nearest ten-thousandth. Use the appropriate number of terms in your evaluation.

$$\int_0^{0.77} e^{-x^2} \, dx$$

9. Find the equation of the line which is tangent to the given parametric equation where t = 0. Give your answer in slope –intercept form.

$$X(t) = e^{3t} - \sin(t) + 3$$
 $Y(t) = e^{-2t} + 4t + 1$

10. a. Graph the polar equation $r = 4\sin(2\theta)$.

b. Find the area enclosed in this curve.

11. Find the length of the parametric curve from t = 0 to t = 2 for

$$X(t) = e^{3t} + e^{-3t} + 2$$
 and $Y(t) = 5 - 6t$

12. Eliminate the parameter and sketch the parametric equation given. Be sure to indicate the direction of travel.

$$X(t) = 2 + 4 \sin t \qquad Y(t) = 2 \cos t + 3 \quad \text{where } 0 \le t \le 2\pi \ .$$

