1. [4] Find (if possible) the supplementary angle of $\theta = \frac{7\pi}{11}$.

2. [4] Find the **least positive coterminal** angle of $\alpha = \frac{29\pi}{7}$

3. [12] Determine which quadrant the following angle θ and α lie:

a)
$$\theta = \frac{19\pi}{6}$$
 Quadrant _____ b) $\alpha = -570^{\circ}$ Quadrant _____

c) Find the <u>exact value</u> (no decimals).

$$\cos\frac{19\pi}{6} =$$

d) Find the **<u>exact value</u>** (no decimals).

$$\csc(-570^\circ) =$$

4. [6] Find the <u>exact length</u> (not in decimal) of the arc intercepted by a central angle of 75° in a circle with the radius of 36 feet.

5. [6] <u>Circle</u> True or False:

a) If angle A and angle B are complementary then $\tan A = \cot B$	TRUE	FALSE	
b) If angle θ lies in Quadrant III, then $\cot \theta > 0$ and $\sec \theta < 0$	TRUE	FALSE	
c) $\cos(A-B) = \cos A - \cos B$	TRUE	FALSE	
d) $-\frac{\pi}{2}$ is in the range of $\tan^{-1} x$.	TRUE	FALSE	
e) $\cos^2 x - \sin^2 x = -1$	TRUE	FALSE	
f) Dot product of two vectors is a vector	TRUE	FALSE	

6. [8] Find the following for $f(x) = -4\sin\left(3x + \frac{\pi}{3}\right) - 5$.

Amplitude:	
Period:	
Phase shift:	
Range:	

7. [8] Sketch the graph of $y = -2\cos x + 1$ for only one period. Label all the tick marks on both x and y axis where necessary.

	· · · · · · · · · · · · · · · · · · ·
	, , , , , , , , , , , , , , , , , , ,
	, , , , , , , , , , , , , , , , , , ,

8. [8] a) State the **<u>Sum identity</u>** for $\cos(\alpha + \beta)$.

$$\cos(\alpha + \beta) =$$

b) Assuming that $\cos \alpha = -\frac{3}{5}$ where α is in **<u>quadrant II</u>** and $\cos \beta = \frac{12}{13}$ where β is in **<u>quadrant IV</u>**. Find the **exact value** of $\cos(\alpha + \beta)$.

9. [8] Find the **exact value** of the following:

a)
$$\cos^{-1}\left(\cos\frac{5\pi}{6}\right) =$$
 b) $\sin\left(\cos^{-1}\left(\frac{x}{2}\right)\right) =$

10. [8] Given the following graph of a function, find the following

11. [8] Complete the following trigonometric identities:

a) $1-\sin^2 x =$ _____ b) $1+\tan^2 x =$ _____ c) $\sin(2x) =$ _____ d) $\cos(2x) =$ _____ 12. [6] Given $\sin x = -\frac{4}{5}$ and x is in **Quadrant III**. Find the exact value of the following.

13. [8] Prove that following identity by starting with one side and obtaining the other through writing a sequence of equivalent expressions.

$$\frac{\cot^2 x}{\cot^2 x+1} = \cos^2 x$$

- 14. [6] Use the given <u>substitution</u> to express the given radical expression as a trigonometric function without radicals. Assume θ is in quadrant I.
 - a) Let $x = 2\sin\theta$ then find and simplify $\sqrt{4-x^2}$.

b) Then find $\tan \theta$.

15. [8] Solve: $\tan x = -\sqrt{3}$ where x is in radians. (Exact value, no decimals) (General solutions)

16. [6] Solve: $\cos^2 x = \frac{1}{4}$ in $[0, 2\pi)$ (Exact value, no decimals)

17. [8] Solve: $6\cos^2 x + \cos x - 2 = 0 \operatorname{on}[0, 2\pi)$. Round your answers to 4 decimal places where necessary.

18. [8] A pole leans away from the sun at an angle of 12° to the vertical. When the angle of elevation of the sun is 58° , the pole casts a shadow 52 ft long on level ground. How long is the pole? Round to the nearest foot.

19. [8] Determine which law applies. Then solve the triangle ABC, if possible.

Round your answers to **one decimal place**. a = 18.2 in, b = 13.7 in, $A = 75.2^{\circ}$

Law of _____

20. [8] a) Write the complex number 1-i in <u>trigonometric form</u>.

b) Use **De Moivre's** theorem to raise the complex number in part a) to the given power. Write your answer in **standard notation**, a + bi.

$$(1-i)^8$$

21. [8] Find the <u>square roots</u> of the complex number -16i. Write your answer in <u>standard</u> <u>notation</u>, a + bi.

22. [6] Convert the rectangular coordinate (2,-2) to <u>polar coordinate</u>. (Exact and **do not use decimals**.)

23. [6] Convert to **Polar equation**: $y = x^2$

24. [8] Complete the table (round to one decimal place) and graph $r = 3\sin \theta$	(3θ)).
--	-------------	----

θ	0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°	180°
r													
					150 165° 180° 195° 210			90°	75°	50° 45° 315°	30° 15° 0° / 360° 345°		

25. [6] Perform the following if $\vec{u} = \langle 5, -2 \rangle$ and $\vec{v} = \langle -4, 7 \rangle$

a) $\vec{u} - 2\vec{v}$ b) $\vec{u} \cdot \vec{v}$

26. [8] <u>Classify</u> the graph of the equation circle, a parabola, or an ellipse for part a). Find the necessary information as given and write N/A for any that do not pertain to this type of conic and <u>sketch the graph</u>:

- d) Foci:

27. [6] Graph: $f(x) = \tan^{-1} x$. State the domain and range of f(x).

Label the necessary tick marks on both axes clearly.

CHOOSE 1 OF THE 2 REMAINING PROBLEMS. IF YOU DON'T CHECK A BOX, THE FIRST 1 WILL BE GRADED.

28. [6] Find the <u>magnitude</u> of the <u>resultant vector</u> $\vec{u} + \vec{v}$ given that $|\vec{u}| = 2$, $|\vec{v}| = 3$ and that the angle between the vectors is 42° . Round to the <u>nearest tenth</u>.

Grade?

29. [6] After taking off, an airplane reaches a speed of 130 km/h on a course of 53° . A wind of 20 km/h is blowing from 320° . What is the groundspeed of the plane? Round your answer to **two decimal places**.

Grade?