MATH 109 – Final Exam Fall 2021

Function	Domain	Range		
$y = \sin x$				
$y = \cos x$				
$y = \sin^{-1} x$				
$y = \cos^{-1} x$				
$y = \tan^{-1} x$				

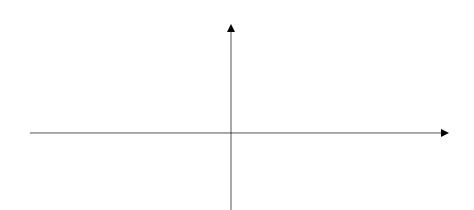
1. [5] State the **domain** and **range** of the following trigonometric functions in interval notation:

2. [5] Find the **least positive coterminal** angle of $\frac{30\pi}{7}$.

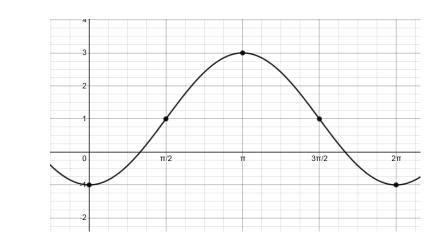
3. [5] Find the **supplementary angle** (if any) of $\frac{13\pi}{16}$.

4. [10] Complete the table:

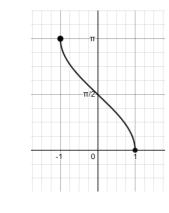
		$\begin{array}{c} \textbf{Quadrant} \\ \text{where angle} \\ \theta \\ \text{terminates} \end{array}$	Reference angle θ'	Sign (+ or –)	Equivalent form in terms of reference angle	Exact Value (Answer not in decimal)
a)	$\cos 660^{\circ}$					
b)	$\sec \frac{19\pi}{6}$					


5. [6] If θ is an acute angle and $\cos \theta = \frac{2}{3}$, Find the following:

a)
$$\sqrt{1-\sin^2\theta}$$
 b) $\csc\theta$

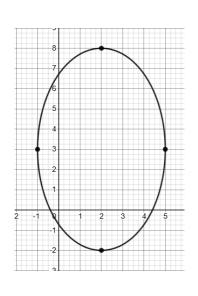

6. [8] Find the following for
$$f(x) = -3\sin\left(4x - \frac{\pi}{3}\right) + 2$$
.

Amplitude:	
Period:	
Phase shift:	
Range:	


7. [6] <u>Sketch</u> the graph of $y = 2\sin(4x) + 1$ for <u>only one period</u>. <u>Label</u> all the tick marks on both x and y axis where necessary.

8. [12] Write an equation for the following graphs:

Equation:



Equation:

c)

b)

a)

Equation:

$1 + \tan^2 x$	=
$\sin(2x)$	=
$\cos^2 x - \sin^2 x$	=
$\cos\!\left(\frac{\pi}{2}\!-\!\theta\right)$	=

9. [4] Complete the identities (No Partial credit).

10. [8] Assuming that $\cos A = -\frac{2}{3}$ where *A* is in quadrant II and $\sin B = -\frac{1}{3}$ where *B* is in quadrant IV. Find the **exact value** of $\cos(A-B)$.

11. [6] If $x = 3 \sec \theta$ then find and simplify $\sqrt{x^2 - 9}$ given that $0 < \theta < \frac{\pi}{2}$.

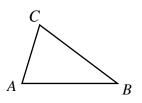
12. [8] Verify the identity: $\sin \theta (\tan \theta + \cot \theta) = \sec \theta$

13. [8] Solve: $\sin x = \frac{\sqrt{3}}{2}$ where x is in radians. (General solutions. No decimal answers)

14. [8] Solve: $\sin x = -0.25$ where x is in $[0^{\circ}, 360^{\circ})$. **Round** your answer(s) to the nearest degree.

15. [8] Solve: $2\sin^2 x + \cos x - 1 = 0$ on $[0, 2\pi)$. (No decimal answers.)

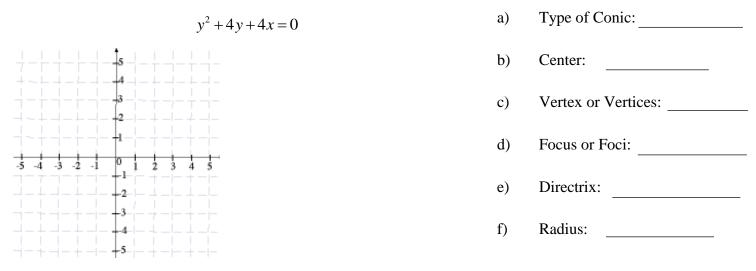
16. [12] Given $\tan x = -\frac{3}{4}$ and x is in **Quadrant IV**. Find the exact value of the following and **state** the quadrant in which 2x lies.


a) [3] $\sin(2x) =$ b) [3] $\cos(2x) =$

c) [3] $\tan(2x) =$

d) [3] 2*x* lies in quadrant

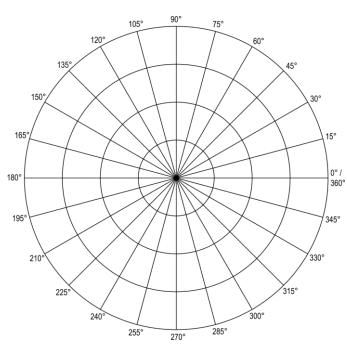
17. [8] Solve the triangle ABC, if possible. Round your answers to one decimal place.


a = 17 in, b = 13 in, $A = 75^{\circ}$

18. [6] Convert the rectangular coordinate $\left(-\sqrt{2},\sqrt{2}\right)$ to **polar coordinate**. (Exact and **do not use decimals**.)

19. [6] Convert to **rectangular equation**: $r = 3\cos\theta$

20. [12] <u>Classify</u> the graph of the equation circle, a parabola, or an ellipse for part a). Find the necessary information as given and write N/A for any that do not pertain to this type of conic and <u>sketch the</u> <u>graph</u>:



21. [8] Use De Moivre's theorem to raise the complex number to the given power. Write your answer in <u>standard notation</u>, a + bi.

$$\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)^{6}$$

22. [8] Complete the table (round to one decimal place) and graph $r = 2 - 2\cos\theta$.

θ	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
r													

23. [8] Perform the following if $\vec{u} = \langle 5, -2 \rangle$ and $\vec{v} = \langle -4, 7 \rangle$

a) $\vec{u} - 2\vec{v}$ b) $\vec{u} \cdot \vec{v}$

24. [8] Find the **magnitude** of the **resultant vector** $\vec{u} + \vec{v}$ given that $|\vec{u}| = 2$, $|\vec{v}| = 3$ and that the angle between the vectors is 42° . Round to the **nearest tenth**.

25. [8] After taking off, an airplane reaches a speed of 120 km/h on a course of 55° . A wind of 25 km/h is blowing from 340° . What is the groundspeed of the plane?

26.[9] Find the <u>cube roots</u> of the complex number -8i. Write your answer in <u>standard notation</u>, a + bi.