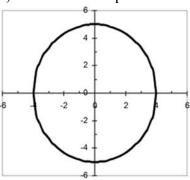
Part I. There are 8 problems in Part I, each worth 5 points. No partial credit will be given, so be careful. Circle the correct answer.

- 1) Determine an equivalent expression for $\cos\left(\frac{\pi}{2} + \theta\right)$.
 - a) $\sin \theta$
- b) $\cos \theta$
- c) $-\sin \theta$
- d) $-\cos\theta$
- e) Not a, b, c, or d


- 2) If θ is an acute angle and $\cos \theta = \frac{1}{5}$, what is $\sin^2 \theta$?

- a) $\frac{24}{5}$ b) $\frac{4}{5}$ c) $\frac{24}{25}$ d) $\frac{\sqrt{24}}{5}$
- e) Not a, b, c, or d

- 3) Find the dot product of u and v if $\vec{u} = <2, -3 >$ and $\vec{v} = <1, -2 >$
 - a)
 - b) -1
 - <3, 3> c)
 - d)
 - Not a, b, c, or d
- 4) Find the compliment of $\frac{2\pi}{5}$.
- a) $\frac{3\pi}{5}$ b) $\frac{\pi}{10}$ c) $\frac{-2\pi}{5}$
- d) $\frac{\pi}{5}$

e) Not a, b, c, or d

5) What is the equation for the following graph?

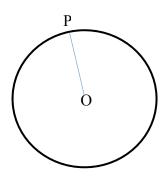
- a) $\frac{x^2}{5} + \frac{y^2}{4} = 1$ b) $\frac{x^2}{25} + \frac{y^2}{16} = 1$ c) $\frac{x^2}{4} + \frac{y^2}{5} = 1$ d) $\frac{x^2}{16} + \frac{y^2}{25} = 1$ e) Not a, b, c, or d

- 6) Which of the following are coterminal to an angle of 70 degrees?
 - a) 20 degrees
- b) 110 degrees c) 430 degrees d) 290 degrees e) Not a,b,c or d

- 7) Find the directrix of the parabola $x^2 = -8(y+1)$.

- a) y = -1 b) x = 1 c) y = 1 d) y = -2 e) Not a, b, c, or d

- 8) What is phase shift for the graph: $y = -3\sin(2x 3) + 5$
 - a) 5


- b) 3/2 c) 3 d) -3/2 e) not a,b,c or d

Part II. Partial credit will be given here. Show all your work. Each problem is worth 6 points.

9) Given $u = \langle 2, -4 \rangle$ and vector $v = \langle -1, -1 \rangle$ what is |3u - 2v| = ?

10) Suppose that P is a point on a circle with a radius of 8 inches and the ray OP is rotating with angular speed 60 degrees per second.

a) Find the angular speed in radians per second

b) Find the distance travelled by P along the arc after 3 second (i.e. arc length)

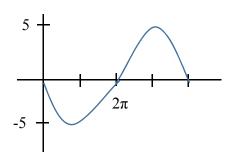
11) Given $\cos x = 0.2$, state the solution set on $[0,360^{\circ})$. Approximate to nearest degree. Show all work clearly.

- 12) If the rectangular coordinates of a point are (4, -4), what are its polar coordinates (r, θ) given the following.
 - a) $r > 0.0^{\circ} \le \theta < 360^{\circ}$

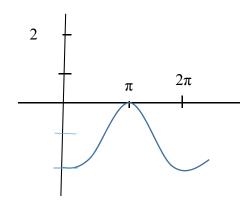
b) $r < 0.0^{\circ} \le \theta < 360^{\circ}$

13) Write the trigonometric expression as an algebraic expression in terms of u (assuming u>0). $cos(tan^{-1}u)$

- 14) Perform the indicated operation:
 - a) Factor: $2\sin^2 x 4\cos x \sin x$
- b) Simplify: $\frac{\cos^2 x}{1-\sin^2 x}$


Part III. Partial credit will be given here. Show all your work. Each problem is worth 12 points.

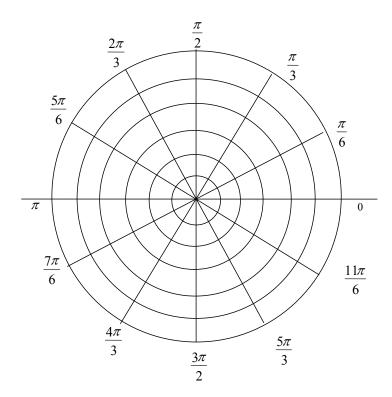
15) Write an equation for each. (4pts each)


Answer

Answer _____

a)

b)


c) Graph $f(x) = cos^{-1}x$ Label axes with at least 2 ticks each. 16) Given $\cos \alpha = \frac{1}{5}$, $\frac{3\pi}{2} < \alpha < 2\pi$ and $\sin \beta = \frac{1}{4}$, $0 < \beta < \frac{\pi}{2}$. Evaluate each of the following exactly (do not use any decimals!!). (12 pts)

 $a)\cos(2\beta)$

b) $\sin(\alpha - \beta)$

17) Verify (prove): $\cot(x) + \tan(x) = \sec(x)\csc(x)$ Include all steps and **explanations.** (12 pts)

18) a) Graph the polar equation $r = 3 - 4\cos(\theta)$ on the axes below. (7 pts)

- θ r
- b) Convert the following polar form into rectangular form: $(3, 150^{0})$ (5 pts)

- 19) Solve the following.
 - a) Find all solutions to $4\cos^2 x 3 = 0$. (6 pts) Note: All solutions are the same Express in terms of degrees.

as for all real numbers.

b) $2\sin^2 x = 1 - \sin x$ on $[0, 2\pi)$ (6 pts)

20) Solve the triangle ABC with sides $a = 4 \, cm$, $b = 7 \, cm$ and $c = 9 \, cm$. Round all answers to the nearest tenth (one decimal place). (12 pts)

A=

B=

C=

21) Change $y^2 - 4x + x^2 + 6y = 2$ into standard form. Identify the graph as an ellipse, circle, parabola. Then graph the equation.

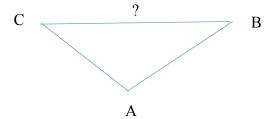
PART IV. Here are 6 problems. <u>Do any 4, but only 4.</u> Each is worth 10 points. Be sure to check the box for each problem to be graded.

	22) Find cube roots of $1-i$. Leave answers in trig form
Grade	

23) Graph the following. Indicate and label all critical information.

$$\frac{(y-3)^2}{9} + \frac{(x+2)^2}{4} = 1$$

- Center:____
- Vertices:_____
- Foci:_____


(REMDINDER:	Do 4 of the 6 problems in this section and check the box next to the ones I
should grade!)	

Grade

24) An airplane is flying at a <u>height</u> of 2 miles above the ground. The distance <u>along the ground</u> from the airplane to the airport is 5 miles. What is the <u>angle of depression</u> from the airplane to the airport? Use degrees and round to 1 decimal place.

Grade

25) Points A & B are on opposite sides of a lunar crater. Point C is 50 m from point A. The measure of angle BAC is 112 degrees and the measure of angle ABC is 38 degrees. What is the width of the crater?

(REMDINDER: Do 4 of the 6 problems in this section and check the box next to the ones I should grade!)

Grade

26) Prove the following identity: $tan(A + B) = \frac{tanA + tanB}{1 - tanAtanB}$

Grade

- 27) Two forces of 38 N and 45 N act on objects at 48 degree angles.
 - a) Find the magnitude of the resultant vector
- b) Find the angle the resultant vector makes with the smaller force.