Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each.

1. Factor **completely**. Do not solve.

b) $x^3 - 2x^2 + 3x - 6$ a) $2x^2 + 20x + 18$

2. Find the quotient and remainder.

Quotient:	
Quotionit.	

$(x^{3} -$	$3x+1) \div (x+2)$	

Remainder: _____

3. State the slope and y-intercept for the line 5x + 2y = 6

m = _____ *y* - int : _____

(write it as an ordered pair)

- 4. Given the graph of f(x), state all x such that:
 - a) f(x) is increasing (use interval notation)
 - b) f(x) < 0 (use interval notation)

5. Solve: $-3 \le \frac{2+x}{4} < 6$. Express your answer in interval notation.

- 6. Find the domain of the function $g(x) = \sqrt{x+3}$. Circle the correct answer.
 - a) $(-\infty, \infty)$
 - b) $(-3, \infty)$
 - c) (−∞,−3)
 - d) [−3,∞)
 - e) (−∞,−3]

7. Solve for x. Show all work and circle your final answer.

a) $x^2 - 5x = 6$ b) $A = \frac{1}{4}xy$

- 8. Let f(x) = 5x 3 and $g(x) = x^2 + 1$. Find and simplify.
 - a) $(f \circ g)(2)$ b) (f g)(x)

9. Solve ALGEBRICALLY. Show all work. |2x - 3| + 4 = 11

10. Graph each function. Dash in asymptotes where needed. Label all intercepts and asymptotes!

11. Find the product. Express in a + bi form. (4 + 6i)(1 - 3i)

12. Find the <u>slope</u> of linear function *f* such that f(3) = 2 and f(0) = -1.

m = _____

13. Write a polynomial of degree 3 that has zeros: 2 and 4*i*. Write final answer in polynomial form (multiplied out).

f(*x*)=_____

- 14. Given the point (-2, 3), find a point that is symmetric to the given point:
 - a) with respect to the y-axis. b) with respect to the origin.

Part II. There are 9 problems in this section. Show all work. 10 points each.

- 15. A stone is thrown directly upward. Its height after t seconds is given by the function $h(t) = -3t^2 + 6t + 4$. The height of the stone is measured in feet. Show your work algebraically and include units on your answers.
 - a) What is the initial height of the stone?
 - b) How long does it take for the stone to reach its maximum height?
 - c) What is the maximum height the stone reaches?

- 16. Find all asymptotes, x-intercepts (zeros), and y-intercepts for the graph $f(x) = \frac{4x-6}{x-2}$.
 - a) The equation of the vertical asymptote(s) is/are x =_____.
 - b) The equation of the horizontal asymptote(s) is/are y =_____.
 - c) The *x*-intercept (or zero) is at the point _____.
 - d) The y-intercept is at the point _____.
 - e) Sketch the graph of f(x). Label all intercepts, asymptotes, and any additional points you found to help improve your graph.

17. Find a formula for the inverse given $f(x) = \frac{x+1}{3x-2}$.

 $f^{-1}(x) =$ ______

- 18. Solve algebraically for *x*.
 - a) $4^{2x} = 8^{3x-1}$

b) $\ln(5x-9) = 0$

19. Suppose \$600 is invested in a savings account in which interest is compounded continuously at 2% per year. The amount of money in the account *t* years later is given by the equation: $A = 600e^{0.02t}$. Find the amount of time it would take the amount to reach \$2000. Leave your answer in exact form since no calculators are allowed.

- 20. Given the function $f(x) = x^2(x-2)(x+3)^2$,
 - a) Find the y-intercept.
 - b) Find all zeros and state their multiplicities. zero multiplicity
 - c) Is f(x) tangent to the x-axis?If so, where?
 - d) Draw ending behavior.
 - e) Sketch graph. Label all intercepts.
- 21. Solve algebraically: $\sqrt{6x+7} = x+2$. Check all solutions.

22. Given the function $f(x) = x^2 + 6x + 5$

- a) State the y-intercept.
- b) State the zeros of the function.
- c) The vertex is (_____, ___).

- d) State the <u>range</u> of f.
- e) Graph. Label intercepts and vertex.

23. Given the polynomial $g(x) = x^3 - x^2 + x - 6$

- a) State all possible rational zeros.
- b) Find all zeros (real and complex.)

Part III. There are 6 problems in this section. Choose any 4. Indicate in the boxes the problems you want graded. 10 points each. If you do not indicate which 4, the first 4 will be graded. No Extra Credit!

26. Given $f(x) = 2x^2 + 4x$, find and simplify $\frac{f(x+h) - f(x)}{h}$. Grade

27. Solve algebraically for *x*. $\log_2 x + \log_2(x-2) = 3$

Grade

Grade 28. Solve $\frac{x+2}{x-3} \ge 0$. Express in interval form. To receive full credit you must show work that supports your answer.

- a) Solve algebraically Show all your work.
- $\begin{cases} 2x 3y = -6\\ x + y = 2 \end{cases}$
 - b) Solve graphically and explain how you obtained your answer by looking at the graph.

Answer: ____